Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We present the analysis of the luminous Type II Supernova (SN) 2021tsz, which exploded in a low-luminosity galaxy. It reached a peak magnitude of −18.88 ± 0.13 mag in therband and exhibited an initial rapid decline of 4.05 ± 0.14 mag (100 d)−1from peak luminosity till ∼30 d. The photospheric phase is short, with the SN displaying bluer colours and a weak Hαabsorption component–features consistent with other luminous, short-photospheric phase Type II SNe. A distinct transition from the photospheric to the radioactive tail phase in theVband–as is common in hydrogen-rich Type II SNe–is not visible in SN 2021tsz, although a modest ∼1 mag drop is apparent in the redder filters. Hydrodynamic modelling suggests the luminosity is powered by ejecta-circumstellar material (CSM) interaction during the early phases (< 30 days). Interaction with 0.6 M⊙of dense CSM extending to 3100 R⊙reproduces the observed luminosity, with an explosion energy of 1.3 × 1051erg. The modelling indicates a pre-SN mass of 9 M⊙, which includes a hydrogen envelope of 4 M⊙, and a radius of ∼1000 R⊙. Spectral energy distribution analysis and strong-line diagnostics revealed that the host galaxy of SN 2021tsz is a low-metallicity, dwarf galaxy. The low-metallicity environment and the derived high mass loss from the hydrodynamical modelling strongly support a binary progenitor system for SN 2021tsz.more » « lessFree, publicly-accessible full text available November 1, 2026
-
ABSTRACT We present a search for luminous long-duration ambiguous nuclear transients (ANTs) similar to the unprecedented discovery of the extreme ambiguous event AT2021lwx with a $$\gt 150$$ d rise time and luminosity $$10^{45.7}$$ erg s$$^{-1}$$. We use the Lasair transient broker to search Zwicky Transient Facility (ZTF) data for transients lasting more than one year and exhibiting smooth declines. Our search returns 59 events, 7 of which we classify as ANTs assumed to be driven by accretion onto supermassive black holes. We propose the remaining 52 are stochastic variability from regular supermassive black hole accretion rather than distinct transients. We supplement the seven ANTs with three nuclear transients in ZTF that fail the light curve selection but have clear single flares and spectra that do not resemble typical active galactic nucleus. All of these 11 ANTs have a mid-infrared flare from an assumed dust echo, implying the ubiquity of dust around the black holes giving rise to ANTs. No events are more luminous than AT2021lwx, but one (ZTF19aamrjar) has twice the duration and a higher integrated energy release. On the other extreme, ZTF20abodaps reaches a luminosity close to AT2021lwx with a rise time $$\lt 20$$ d and that fades smoothly in $$\gt 600$$ d. We define a portion of rise-time versus flare amplitude space that selects ANTs with $$\sim 50$$ per cent purity against variable AGNs. We calculate a volumetric rate of $$\gtrsim 3\times 10^{-11}$$ Mpc$$^{-1}$$ yr$$^{-1}$$, consistent with the events being caused by tidal disruptions of intermediate and high-mass stars.more » « less
-
Due to high-cadence automated surveys, we can now detect and classify supernovae (SNe) within a few days after explosion, if not earlier. Early-time spectra of young SNe directly probe the outermost layers of the ejecta, providing insights into the extent of stripping in the progenitor star and the explosion mechanism in the case of core-collapse supernovae. However, many SNe show overlapping observational characteristics at early times, complicating the early-time classification. In this paper, we focus on the study and classification of type Ib supernovae (SNe Ib), which are a subclass of core-collapse SNe that lack strong hydrogen lines but show helium lines in their spectra. Here we present a spectral dataset of eight SNe Ib, chosen to have at least three pre-maximum spectra, which we call early spectra. Our dataset was obtained mainly by the Las Cumbres Observatory (LCO) and it consists of a total of 82 optical photospheric spectra, including 38 early spectra. This dataset increases the number of published SNe Ib with at least three early spectra by ∼60%. For our classification efforts, we used early spectra in addition to spectra taken around maximum light. We also converted our spectra into SN IDentification (SNID) templates and make them available to the community for easier identification of young SNe Ib. Our dataset increases the number of publicly available SNID templates of early spectra of SNe Ib by ∼43%. Half of our sample has SN types that change over time or are different from what is listed on the Transient Name Server (TNS). We discuss the implications of our dataset and our findings for current and upcoming SN surveys and their classification efforts.more » « less
-
Context.There is a growing number of peculiar events that cannot be assigned to any of the main classes. SN 1987A and a handful of similar objects, thought to be explosive outcomes of blue supergiant stars, is one of them: while their spectra closely resemble those of H-rich (IIP) SNe, their light curve (LC) evolution is very different. Aims.Here we present the detailed photometric and spectroscopic analysis of SN 2021aatd, a peculiar Type II explosion. While its early-time evolution resembles that of the slowly evolving double-peaked SN 2020faa (although at a lower luminosity scale), after ∼40 days its LC shape becomes similar to that of SN 1987A-like explosions. Methods.In addition to comparing LCs, color curves, and spectra of SN 2021aatd to those of SNe 2020faa, 1987A, and other objects, we compared the observed spectra with our ownSYN++models and with the outputs of published radiative transfer models. We also carried out a detailed modeling of the pseudo-bolometric LCs of SNe 2021aatd and 1987A with a self-developed semi-analytical code, assuming a two-component ejecta (core + shell), and involving the rotational energy of a newborn magnetar in addition to radioactive decay. Results.We find that the photometric and the spectroscopic evolution of SN 2021aatd can be well described with the explosion of a ∼15M⊙blue supergiant star. Nevertheless, SN 2021aatd shows higher temperatures and weaker Na ID and Ba II6142 Å lines than SN 1987A, which is instead reminiscent of IIP-like atmospheres. With the applied two-component ejecta model (accounting for decay and magnetar energy), we can successfully describe the bolometric LC of SN 2021aatd, including the first ∼40-day phase showing an excess compared to 87A-like SNe, but being strikingly similar to that of the long-lived SN 2020faa. Nevertheless, finding a unified model that also explains the LCs of more luminous events (e.g., SN 2020faa) is still a matter of debate.more » « less
-
Abstract Type Ibn supernovae (SNe Ibn) are rare stellar explosions powered primarily by interaction between the SN ejecta and H-poor, He-rich material lost by their progenitor stars. Multiwavelength observations, particularly in the X-rays, of SNe Ibn constrain their poorly understood progenitor channels and mass-loss mechanisms. Here we present Swift X-ray, ultraviolet, and ground-based optical observations of the Type Ibn SN 2022ablq, only the second SN Ibn with X-ray detections to date. While similar to the prototypical Type Ibn SN 2006jc in the optical, SN 2022ablq is roughly an order of magnitude more luminous in the X-rays, reaching unabsorbed luminositiesLX∼ 4 × 1040erg s−1between 0.2–10 keV. From these X-ray observations we infer time-varying mass-loss rates between 0.05 and 0.5M⊙yr−1peaking 0.5–2 yr before explosion. This complex mass-loss history and circumstellar environment disfavor steady-state winds as the primary progenitor mass-loss mechanism. We also search for precursor emission from alternative mass-loss mechanisms, such as eruptive outbursts, in forced photometry during the 2 yr before explosion. We find no statistically significant detections brighter thanM≈ −14—too shallow to rule out precursor events similar to those observed for other SNe Ibn. Finally, numerical models of the explosion of an ∼15M⊙helium star that undergoes an eruptive outburst ≈1.8 yr before explosion are consistent with the observed bolometric light curve. We conclude that our observations disfavor a Wolf–Rayet star progenitor losing He-rich material via stellar winds and instead favor lower-mass progenitor models, including Roche-lobe overflow in helium stars with compact binary companions or stars that undergo eruptive outbursts during late-stage nucleosynthesis stages.more » « less
-
Abstract We present analysis of the plateau and late-time phase properties of a sample of 39 Type II supernovae (SNe II) that show narrow, transient, high-ionization emission lines (i.e., “IIn-like”) in their early-time spectra from interaction with confined, dense circumstellar material (CSM). Originally presented by W. V. Jacobson-Galán et al., this sample also includes multicolor light curves and spectra extending to late-time phases of 35 SNe with no evidence for IIn-like features at <2 days after first light. We measure photospheric phase light-curve properties for the distance-corrected sample and find that SNe II with IIn-like features have significantly higher luminosities and decline rates at +50 days than the comparison sample, which could be connected to inflated progenitor radii, lower ejecta mass, and/or persistent CSM interaction. However, we find no statistical evidence that the measured plateau durations and56Ni masses of SNe II with and without IIn-like features arise from different distributions. We estimate progenitor zero-age main-sequence (ZAMS) masses for all SNe with nebular spectroscopy through spectral model comparisons and find that most objects, both with and without IIn-like features, are consistent with progenitor masses ≤12.5M⊙. Combining progenitor ZAMS masses with CSM densities inferred from early-time spectra suggests multiple channels for enhanced mass loss in the final years before core collapse, such as a convection-driven chromosphere or binary interaction. Finally, we find spectroscopic evidence for ongoing ejecta-CSM interaction at radii >1016cm, consistent with substantial progenitor mass-loss rates of ∼10−4–10−5M⊙yr−1(vw < 50 km s−1) in the final centuries to millennia before explosion.more » « lessFree, publicly-accessible full text available October 8, 2026
-
Abstract We present ultraviolet to infrared observations of the extraordinary Type IIn supernova 2023zkd (SN 2023zkd). Photometrically, it exhibits persistent and luminous precursor emission spanning ∼4 yr preceding discovery (Mr ≈ −15 mag, 1500 days in the observer frame), followed by a secondary stage of gradual brightening in its final year. Post-discovery, it exhibits two photometric peaks of comparable brightness (Mr ≲ −18.7 mag andMr ≈ −18.4 mag, respectively) separated by 240 days. Spectroscopically, SN 2023zkd exhibits highly asymmetric and multicomponent Balmer and HeIprofiles that we attribute to ejecta interaction with fast-moving (1000–2000 km s−1) He-rich polar material and slow-moving (∼400 km s−1) equatorially distributed H-rich material. HeIIfeatures also appear during the second light curve peak and evolve rapidly. Shock-driven models fit to the multiband photometry suggest that the event is powered by interaction with ∼5–6M⊙of CSM, with 2–3M⊙associated with each light curve peak, expelled during mass-loss episodes ∼3–4 yr and ∼1–2 yr prior to explosion. The observed precursor emission, combined with the extreme mass-loss rates required to power each light curve peak, favors either super-Eddington accretion onto a black hole or multiple long-lived eruptions from a massive star to luminosities that have not been previously observed. We consider multiple progenitor scenarios for SN 2023zkd, and find that the brightening optical precursor and inferred explosion properties are most consistent with a massive (MZAMS≥ 30M⊙) and partially stripped He star undergoing an instability-induced merger with a black hole companion.more » « lessFree, publicly-accessible full text available August 13, 2026
-
We present the photometric and spectroscopic analysis of five Type Ibn supernovae (SNe): SN 2020nxt, SN 2020taz, SN 2021bbv, SN 2023utc, and SN 2024aej. These events share key observational features and belong to a family of objects similar to the prototypical Type Ibn SN 2006jc. The SNe exhibit rise times of approximately 10 days and peak absolute magnitudes ranging from −16.5 to −19 mag. Notably, SN 2023utc is the faintest Type Ibn SN discovered to date, with an exceptionally lowr-band absolute magnitude of −16.4 mag. The pseudo-bolometric light curves peak at (1 − 10)×1042erg s−1, with total radiated energies on the order of (1 − 10)×1048erg. Spectroscopically, these SNe display a relatively slow spectral evolution. The early spectra are characterised by a hot blue continuum and prominent He Iemission lines. The early spectra also show blackbody temperatures exceeding 10 000 K, with a subsequent decline in temperature during later phases. Narrow He Ilines, which are indicative of unshocked circumstellar material (CSM), show velocities of approximately 1000 km s−1. The spectra suggest that the progenitors of these SNe underwent significant mass loss prior to the explosion, resulting in a He-rich CSM. Our light curve modelling yielded estimates for the ejecta mass (Mej) in the range 1 − 3 M⊙with kinetic energies (EKin) of (0.1 − 1)×1050erg. The inferred CSM mass ranges from 0.2 to 1 M⊙. These findings are consistent with expectations for core collapse events arising from relatively massive envelope-stripped progenitors.more » « lessFree, publicly-accessible full text available August 1, 2026
-
ABSTRACT Near-infrared (NIR) observations of normal Type Ia supernovae (SNe Ia) obtained between 150 and 500 d past maximum light reveal the existence of an extended plateau. Here, we present observations of the underluminous, 1991bg-like SN 2021qvv. Early, ground-based optical and NIR observations show that SN 2021qvv is similar to SN 2006mr, making it one of the dimmest, fastest evolving 1991bg-like SNe to date. Late-time (170–250 d) Hubble Space Telescope observations of SN 2021qvv reveal no sign of a plateau. An extrapolation of these observations backwards to earlier-phase NIR observations of SN 2006mr suggests the complete absence of an NIR plateau, at least out to 250 d. This absence may be due to a higher ionization state of the ejecta, as predicted by certain sub-Chandrasekhar-mass detonation models, or to the lower temperatures of the ejecta of 1991bg-like SNe, relative to normal SNe Ia, which might preclude their becoming fluorescent and shifting ultraviolet light into the NIR. This suggestion can be tested by acquiring NIR imaging of a sample of 1991bg-like SNe that covers the entire range from slowly evolving to fast-evolving events (0.2 ≲ sBV ≲ 0.6). A detection of the NIR plateau in slower evolving, hotter 1991bg-like SNe would provide further evidence that these SNe exist along a continuum with normal SNe Ia. Theoretical progenitor and explosion scenarios would then have to match the observed properties of both SN Ia subtypes.more » « less
-
Abstract We present ultraviolet/optical/near-infrared observations and modeling of Type II supernovae (SNe II) whose early time (δt< 2 days) spectra show transient, narrow emission lines from shock ionization of confined (r< 1015cm) circumstellar material (CSM). The observed electron-scattering broadened line profiles (i.e., IIn-like) of Hi, Hei/ii, Civ, and Niii/iv/vfrom the CSM persist on a characteristic timescale (tIIn) that marks a transition to a lower-density CSM and the emergence of Doppler-broadened features from the fast-moving SN ejecta. Our sample, the largest to date, consists of 39 SNe with early time IIn-like features in addition to 35 “comparison” SNe with no evidence of early time IIn-like features, all with ultraviolet observations. The total sample includes 50 unpublished objects with a total of 474 previously unpublished spectra and 50 multiband light curves, collected primarily through the Young Supernova Experiment and Global Supernova Project collaborations. For all sample objects, we find a significant correlation between peak ultraviolet brightness and bothtIInand the rise time, as well as evidence for enhanced peak luminosities in SNe II with IIn-like features. We quantify mass-loss rates and CSM density for the sample through the matching of peak multiband absolute magnitudes, rise times,tIIn, and optical SN spectra with a grid of radiation hydrodynamics and non-local thermodynamic equilibrium radiative-transfer simulations. For our grid of models, all with the same underlying explosion, there is a trend between the duration of the electron-scattering broadened line profiles and inferred mass-loss rate: (0.01M⊙yr−1)] days.more » « less
An official website of the United States government
